<u>Creanic</u> LETTERS

Copper-Catalyzed Aerobic Oxidative Amination of sp³C–H Bonds: Efficient Synthesis of 2-Hetarylquinazolin-4(3*H*)-ones

Qiang Li,[†] Yao Huang,[†] Tieqiao Chen,[†] Yongbo Zhou,^{*,†} Qing Xu,[‡] Shuang-Feng Yin,^{*,†} and Li-Biao Han[†]

[†]State Key Laboratory of Chemo/Biosensing and Chemo metrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

 $^{
m t}$ College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

Supporting Information

ABSTRACT: An efficient synthesis of 2-hetarylquinazolin-4(3H)-ones via copper-catalyzed direct aerobic oxidative amination of sp³C-H bonds has been developed. This tandem oxidation-amination-cyclization transformation represents a straightforward protocol to prepare 2-hetaryl-substituted quinazolinones from easily available 2-aminobenzamides and (2-azaaryl)methanes.

Quinazolin-4(3*H*)-one compounds, especially 2-heterocycle-substituted quinazolin-4(3*H*)-ones, constitute the key core units of many synthetic drugs and natural products.^{1–3} For example, luotonin $A^{3a,b}$ has cytotoxicity toward human cancer lines, while bouchardatine^{3c} occurs in the natural product *Bouchardatia neurococca* (Figure 1). Traditionally, quinazolin-

Figure 1. Examples of quinazolin-4(3*H*)-one fused natural product and synthetic drug.

4(3H)-ones are prepared by the oxidative condensation of *o*-aminobenzamide with aldehydes or carboxylic acid derivatives under acidic or basic conditions.^{4–6} However, the corresponding aldehydes are usually expensive and chemically unstable for preparation and storage, while the acid derivatives only show low reactivity due to severe decarboxylation side reactions.⁷ To overcome these drawbacks, alternative methods, such as intramolecular cyclization of *o*-haloanilides and oxidative condensation of *o*-aminobenzamide with alcohols, haloalkane, and amines, etc., have been developed.⁸ Although these synthetic protocols serve well, these transformations require prefunctionalized substrates and usually suffer from poor atom economy. Thus, more straightforward methods for the preparation of quinazolin-4(3H)-one compounds from easily available substrates still remain highly desirable.

Recently, the direct transformations of methylarenes and methylhetarenes have attracted increasing attention due to their recognized importance in biology, pharmacology, and organic

synthesis.⁹ However, examples of such reactions applied in the construction of *N*-heterocycles remain scarce.^{10,11} Herein, we disclose an efficient synthesis of 2-hetarylquinazolin-4(3*H*)-ones **1** using the readily available 2-aminobenzamides **2** and (2-azaaryl)methanes **3** (eq 1). This transformation proceeds via Cu-

catalyzed direct aerobic oxidative amination of $sp^{3}C-H$ bonds.¹² Compared to conventional methods, this procedure is distinguished by using clean O₂ as an oxidant, avoiding the use of the dangerous hyperoxides and hypervalent iodine(III) reagents.^{9d,11,13} To the best of our knowledge, no similar examples have been reported for such a one-pot synthesis of 2hetarylquinazolin-4(3*H*)-one directly from (2-azaaryl)methane **3**, which is cheap and readily available. This new method provides a totally convenient and environmentally friendly access to heterocyclic compounds **1** via a novel efficient oxidation– amination–cyclization tandem process.

As a model reaction, the reaction of 2-aminobenzamide 2a with 2-methylpyridine 3a under oxygen atmosphere (1 atm) was investigated first (Table 1), disclosing that a catalytic amount of copper and Ph₂PO₂H could promote the reaction efficiently. An extensive screening of the reaction conditions revealed that 1aa was generated in 80% yield in the presence of a catalytic amount of CuCl and Ph₂PO₂H (run 5). All of the copper catalyst, acid and oxygen are essential for this reaction. The absence of any of them led to failure of the formation of the desired product 1aa (runs 1-4). When less amount of catalyst CuCl/Ph₂PO₂H was

 Received:
 May 20, 2014

 Published:
 June 30, 2014

Table 1. Optimization of the Reaction Conditions^a

	O II		Ö	
	NH ₂ +	$\frac{[Cu], \text{ acid}, O_2}{400, 00, 0, 0}$		
	IN⊓2 -	N 130°C, 8 h	~ N	Ĭ]
	2a	3a	1aa	\checkmark
run	[Cu]	acid	solvent	yield ^{b} (%)
1			C ₆ H ₅ Cl	none
2	CuCl		C ₆ H ₅ Cl	none
3 ^c		Ph ₂ PO ₂ H	C ₆ H ₅ Cl	none
4^d	CuCl	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	none
5	CuCl	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	80
6 ^e	CuCl	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	55(76)
7^{f}	CuCl	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	35
8^g	CuCl	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	40
9	CuBr	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	32
10	CuI	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	22
11	$CuCl_2$	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	68
12	CuBr ₂	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	31
13	$Cu(OAc)_2$	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	27
14	CuCl	PhCO ₂ H	C ₆ H ₅ Cl	47
15	CuCl	PhCH ₂ CO ₂ H	C ₆ H ₅ Cl	60
16	CuCl	CF ₃ CO ₂ H	C ₆ H ₅ Cl	35
17	CuCl	Ph ₂ PO ₂ H	MeCN	27
18	CuCl	Ph ₂ PO ₂ H	THF	21
19	CuCl	Ph ₂ PO ₂ H	DCE	11
20	CuCl	Ph ₂ PO ₂ H	toluene	57
21	CuCl	Ph ₂ PO ₂ H	dioxane	65
22^{h}	CuCl	Ph ₂ PO ₂ H	C ₆ H ₅ Cl	43

^{*a*}Reaction conditions: **2a** (0.2 mmol), **3a** (0.4 mmol), copper catalyst (15 mol %), an acid (50 mol %), and solvent (1 mL) in a 25 mL sealed glass tube, O_2 (1 atm), 130 °C, 8 h. ^{*b*}GC yields using *n*-dodecane as an internal standard. ^{*c*}I equiv of Ph₂PO₂H was used. ^{*d*}Conducted under nitrogen. ^{*e*}10 mol % of CuCl was used. Yield in parentheses refers to reaction performed for 24 h. ^{*f*}S mol % of CuCl was used. ^{*g*}20 mol % of Ph₂PO₂H was used. ^{*h*}Under air.

loaded, the yield of **1aa** decreased (runs 6–8). Among the copper catalysts investigated, CuCl showed the highest catalytic efficiency (Table 1, runs 9–13). As to the acid, although inferior to Ph_2PO_2H , carboxylic acids such as $PhCO_2H$, $PhCH_2CO_2H$, and CF_3CO_2H also catalyzed the reaction to give moderate yields of **1aa** (runs 14–16). As for the solvents (runs 17–21), the reaction also took place in toluene and dioxane to give good yields of the product but afforded low yields in acetonitrile, THF, and ClCH₂CH₂Cl (DCE). Finally, the reaction could be carried out under air to give the product in a moderate yield (run 22).

As shown in Table 2, this aerobic oxidative amination can be applied to a variety of substrates to produce the corresponding 2hetaryl-quinazolin-4(3*H*)-one 1 in good yields. In addition to this monosubstituted 2-methylpyridine **3a**, disubstituted 5-ethyl-2-methylpyridine **3b** and 2,6-dimethylpyridine **3c** also gave high yields of the corresponding products (runs 2 and 3). Noteworthy was that only the methyl group at the 2-position of **3b** was oxidatively aminated in this reaction. Very interestingly, a substrate with the methyl group at the 3-position (**3d**) did not react at all under the present reaction conditions (run 4). Similarly, 2-methylquinoline **3e** and 6-methoxy-2-methylquinoline **3f** also gave the expected condensation products **1ae** and **1af** in 86% and 56% yield, respectively (runs 5 and 6). In addition to these simple heterocycles, heterocycles fused multiple heteroatoms were also suitable substrates for this transformation. For

^{*a*}Reaction conditions: **2** (0.2 mmol), **3** (0.4 mmol), CuCl (0.03 mmol, 15 mol %), Ph_2PO_2H (0.1 mmol), C_6H_5Cl (1 mL), 130 °C, 8 h. ^{*b*}Isolated yields (GC yields in parentheses) based on **2**. ^{*c*}20 mol % of CuCl, 4-nitrobenzoic acid (0.2 mmol), 150 °C, 18 h. ^{*d*}30 mol % of CuCl, 4-nitrobenzoic acid (0.2 mmol), 150 °C, 18 h. ^{*e*}63% of **3f** was recovered, whereas substrate **2a** was fully consumed.

example, both 2-methylpyrazine **3g** and 2-methylquinoxaline **3h** produced the corresponding condensation products **1ag** and **1ah** (runs 7 and 8). The reaction was further successfully applied to sulfur-containing 2-methylthiazole **3i** and 2-methylbenzothiazole **3j**, and the oxidative condensation products **1ai** and **1aj** were obtained in good yields under similar reaction conditions (runs 9 and 10). As for 2-aminobenzamides **2**, in addition to the simplest **2a**, the chloro-substituted **2b** and methyl-substituted **2c** also served as good substrates to produce the oxidative condensation products efficiently (runs 11–13 and 14–16). Importantly, the substituted *N*-methylbenzamide **2d** could also be employed in

this reaction to give the corresponding condensation products in good yields (runs 17–19). It should be noted that these oxidative condensation products 1 are valuable synthetic intermediates for the synthesis of biologically active compounds.^{1b} For example, luotonin A (Figure 1) can be easily prepared by using the product $1ae.^{14}$

In order to obtain insight into the reaction mechanism, several control experiments were carried out (Scheme 1). First, by

replacing 2a with 2-ethyl-6-methylaniline 4 in the reaction with 3a, an imine 5 was obtained in 22% yield,¹⁵ indicating that an imine intermediate was involved in the above catalytic oxidative condensation process (Scheme 1, a). It was initially assumed that 3a was oxidized to picolinic acid 6a, which then reacted with 2a to give laa.¹⁶ However, this possibility was readily ruled out because it was confirmed that a mixture of 2a with picolinic acid 6a under the standard conditions did not afford the product 1aa (Scheme 1, b). When picolinaldehyde 6b was allowed to react with 2a, 1aa was obtained in 42% yield (Scheme 1, c). This result indicated that aldehydes perhaps served as the efficient intermediate. Finally, the reaction was strongly retarded in the presence of a radical scavenger. For example, by addition of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or 2,6-di-tertbutyl-4-methylphenol (BHT), only a trace of 1aa was obtained, showing that radical intermediates were involved in this transformation (Scheme 1, d).

On the basis of the experiments described above and literature examples,¹⁷ a possible mechanism for this aerobic oxidation cyclization reaction is outlined in Scheme 2. Since in the absence of an acid¹⁸ or copper the reaction does not proceed, and the methyl group of 3 must be located at the 2-position (a similar reaction did not take place with 3-picoline 3i), it is assumed that 3a can be isomerized to a nonaromatic enamine intermediate 3a'.^{19,20} Moreover, it is confirmed that toluene does not react under the present conditions, indicating that the nitrogen atom of 3a is crucial for the formation of a metal enamide intermediate 7.^{9j-m} Subsequent oxidation of 7 with O₂ generates intermediate 8,^{21a} which then reacts with 2a to give 9.^{21b} Brønsted acid catalyzed dehydration of 9 affords the imine intermediate 10, which is cyclized to give 11. Finally, aerobic oxidation of 11 produces the product 1aa.²²

Scheme 2. Proposed Mechanism

In summary, we have disclosed an efficient copper-catalyzed aerobic oxidative sp^3C-H amination of (2-azaaryl)methanes leading to 2-hetarylquinazolin-4(3*H*)-ones using oxygen as the sole oxidant under mild conditions. Three sp^3C-H and three N-H bonds are removed in this novel chemistry to produce the highly valuable *N*-heterocycles from readily available materials. Further extension and synthetic applications of this Cu-catalyzed oxidative C-H amination method are ongoing in our laboratory.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, product characterization, mechanistic studies, and ¹H and ¹³C NMR spectra of the products. This material is available free of charge via the Internet at http://pubs. acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: zhouyb@hnu.edu.cn.

*E-mail: sf_yin@hnu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSFC (Nos. 21172062, 21273067, 21373080) and Fundamental Research Funds for the Central Universities (Hunan University).

REFERENCES

(1) (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. *Chem. Rev.* 2003, *103*, 893. (b) Mhaske, S. B.; Argade, N. P. *Tetrahedron* 2006, *62*, 9787 and references cited therein.

(2) (a) Jang, C. S.; Fu, F. Y.; Wang, C. Y.; Huang, K. C.; Lu, G.; Thou, T. C. *Science* **1946**, *103*, 59. (b) D'yakonor, A. L.; Telezhenetskaya, M. V. *Chem. Nat. Compd.* **1997**, *33*, 221. (c) Michael, J. P. *Nat. Prod. Rep.* **2004**, *21*, 650.

(3) (a) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. *Heterocycles* 1997, 46, 541. (b) Liang, J. L.; Cha, H. Y.; Jahng, Y. D. *Molecules* 2011, 16, 4861. (c) Wattanapiromsakul, C.; Forster, P. I.; Waterman, P. G. *Phytochemistry* 2003, 64, 609.

(4) (a) Segarra, V.; Isabel Crespo, M.; Pujol, F.; Beleta, J.; Domenech, T.; Miralpeix, M.; Palacios, J. M.; Castro, A.; Martinez, A. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 505. (b) Connolly, D. J.; Guiry, P. J. *Synlett* **2001**, 1707. (c) Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.; Murano, K.; Ohkubo, M.; Kinoshita, T.; Iwashita, A.; Mihara, K.;

Yamazaki, S.; Matsuoka, N.; Teramura, Y.; Miyake, H. J. Med. Chem. 2004, 47, 4151. (d) Liu, J. F.; Ye, P.; Zhang, B.; Bi, G.; Sargent, K.; Yu, L.; Yohannes, D.; Baldino, C. M. J. Org. Chem. 2005, 70, 6339. (e) Liu, J. F.; Kaselj, M.; Isome, Y.; Ye, P.; Sargent, K.; Sprague, K.; Cherrak, D.; Wilson, C. J.; Si, Y.; Yohannes, D. J. Comb. Chem. 2006, 8, 7. (f) Adib, M.; Ansari, S.; Mohammadi, A.; Bijanzadeh, H. R. Tetrahedron Lett. 2010, 51, 30. (g) Kshirsagar, U. A.; Argade, N. P. Org. Lett. 2010, 12, 3716.

(5) (a) Kotsuki, H.; Sakai, H.; Morimoto, H.; Suenaga, H. Synlett **1999**, 1993. (b) Witt, A.; Bergman, J. *Tetrahedron* **2000**, *56*, 7245. (c) Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. J. Org. Chem. **2005**, *70*, 6941. (d) Roy, A. D.; Subramanian, A.; Roy, R. J. Org. Chem. **2006**, *71*, 382. (e) Zhou, J.; Fang, J. J. Org. Chem. **2011**, *76*, 7730.

(6) For traditional methods for the preparation of quinazolin-4(3H)ones derivatives, see: (a) Bergman, J.; Witt, A. *Curr. Org. Chem.* 2003, 7, 659. (b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. *Chem. Rev.* 2003, 103, 893. (c) Connolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry, P. J. *Tetrahedron* 2005, 61, 10153. (d) Patil, A.; Patil, O.; Patil, B.; Surana, J. *Mini-Rev. Med. Chem.* 2011, 11, 633.

(7) Hammick reaction: (a) Dyson, P.; Hammick, D. Ll. J. Chem. Soc. 1937, 1724. (b) Ashworth, M. R. F.; Daffern, R. P.; Hammick, D. Ll. J. Chem. Soc. 1939, 809. (c) Brown, E. V.; Shambhu, M. B. J. Org. Chem. 1971, 36, 2002.

(8) For selected examples, see: (a) Zhou, J.; Fang, J. J. Org. Chem. 2011, 76, 7730. (b) Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. J. Org. Chem. 2012, 77, 7046. (c) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Biomol. Chem. 2012, 10, 240. (d) Sharif, M.; Opalach, J.; Langer, P.; Beller, M.; Wu, X.-F. RSC Adv. 2014, 4, 8. (e) Zhao, D.; Zhou, Y.-R.; Shen, Q.; Li, J.-X. RSC Adv. 2014, 4, 6486. (f) Ge, W.; Zhu, X.; Wei, Y. RSC Adv. 2013, 3, 10817. (g) Thanh Binh, N.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15, 2713. (h) Wei, H.; Li, T.; Zhou, Y.; Zhou, L.; Zeng, Q. Synthesis 2013, 45, 3349.

(9) For selected examples, see: (a) Powell, D. A.; Fan, H. J. Org. Chem. 2010, 75, 2726. (b) Xia, Q.; Chen, W.; Qiu, H. J. Org. Chem. 2011, 76, 7577. (c) Xue, Q.; Xie, J.; Li, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 37. (d) Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2011, 133, 16382. (e) Samanta, R.; Lategahn, J.; Antonchick, A. P. Chem. Commun. 2012, 48, 3194. (f) Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li, Y.; Zhang, H.; Zhang, J.; Liu, Q. Angew. Chem., Int. Ed. 2012, 51, 1244. (g) Amaoka, Y.; Kamijo, S.; Hoshikawa, T.; Inoue, M. J. Org. Chem. 2012, 77, 9959. (h) Xiao, W.; Wei, J.; Zhou, C.-Y.; Che, C.-M. Chem. Commun. 2013, 49, 4619. (i) Gephart, R. T.; Huang, D. L.; Aguila, M. J. B.; Schmidt, G.; Shahu, A.; Warren, T. H. Angew. Chem., Int. Ed. 2012, 51, 6488. (j) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2010, 132, 3650. (k) Qian, B.; Guo, S.; Xia, C.; Huang, H. Adv. Synth. Catal. 2010, 352, 3195. (1) Rueping, M.; Tolstoluzhsky, N. Org. Lett. 2011, 13, 1095. (m) Komai, H.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2011, 13, 1706.

(10) (a) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. J. Am. Chem. Soc. 2013, 135, 118. (b) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2013, 15, 4218.

(11) Very recently, two papers reported that toluene can be used for direct oxidative amination for the construction of *N*-heterocycles, however, toluene is required as solvent and the dangerous hyperoxides are used as oxidant. In particular, these reactions suffer severe homocoupling of toluene. (a) Gu, L. J.; Jin, C.; Guo, J. M.; Zhang, L. Z.; Wang, W. *Chem. Commun.* **2013**, *49*, 10968. (b) Zhao, D.; Wang, T.; Li, J. X. *Chem. Commun.* **2014**, *50*, 6471.

(12) For recent reviews on copper-dioxygene systems, see:
(a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed.
2011, 50, 11062. (b) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (c) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.

(13) For selected examples of oxidative amination of C(sp³)-H bonds using hyperoxides or hypervalent iodine (III) reagents as oxidants:
(a) Souto, J. A.; Zian, D.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 7242.
(b) Yan, Y. Z.; Zhang, Y. H.; Feng, C. G.; Zha, Z. G.; Wang, Z. Y. Angew. Chem., Int. Ed. 2012, 51, 8077.

(14) Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2004, 69, 4563.

(15) A trace of the picolinaldehyde **6b** resulted from the 2-methylpyridine was detected by GC and GC-MS.

(16) Lee, E. S.; Son, J. K.; Na, Y. H.; Jahng, Y. D. J. Heterocycl. Comm. 2004, 10, 325.

(17) (a) Tian, J. S.; Loh, T. P. Angew. Chem., Int. Ed. 2010, 49, 8417.
(b) Zhang, C.; Zong, X. L.; Zhang, L. R.; Jiao, N. Org. Lett. 2012, 14, 3280. (c) Xia, X. F.; Zhang, L. L.; Song, X. R.; Liu, X. Y.; Liang, Y. M. Org. Lett. 2012, 14, 2480.

(18) For activation of pyridines and quinolines by Lewis acids: (a) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448. (b) Deng, G.; Li, C.-J. Org. Lett. 2009, 11, 1171.

(19) For examples: (a) Hamana, H.; Sugasawa, T. *Chem. Lett.* **1983**, 333. (b) Hamana, H.; Sugasawa, T. *Chem. Lett.* **1984**, 1591.

(20) Full incorporation of deuterium on the methyl group could be obtained by refluxing 2-methylpyridine in D_2O ; see ref 9l.

(21) (a) Zhang, G.-W.; Miao, J.-M.; Zhao, Y.; Ge, H.-B. Angew. Chem., Int. Ed. **2012**, *51*, 8318. (b) Cai, Z. J.; Wang, S. Y.; Ji, S. J. Org. Lett. **2012**, *14*, 6068.

(22) (a) Abdel-Jalil, R. J.; Voelter, W.; Saeed, M. *Tetrahedron Lett.* 2004, 45, 3475. (b) Layeva, A. A.; Nosova, E. V.; Lipunova, G. N.; Trashakhova, T. V.; Charushin, V. N. *Russ. Chem. Bull.* 2007, 56, 1821.